Hace unos días se han hecho públicos los resultados de un prometedor trabajo encabezado por investigadores del Hospital Infantil de Boston y la Facultad de Medicina de Harvard, que ha conseguido recuperar, utilizando terapia génica, parte de la audición de ratones sordos. El artículo, que ha merecido la portada de la prestigiosa revista Science Translational Medicine, promete abrir un abanico terapéutico para el tratamiento de la sordera genética en los seres humanos.
La pérdida de audición objeto del estudio tiene que ver con el fallo de las células sensoriales primarias del oído interno conocidas como células ciliadas. Alojadas en el órgano de corti, su función es convertir los estímulos mecánicos (las ondas sonoras producidas por la vibración del aire) en señales eléctricas que se transmiten a las neuronas postsinápticas del cerebro a través del octavo par craneal. El correcto funcionamiento de estas células es esencial tanto para la propia tarea de oír como para el mantenimiento del equilibrio(1). Un dato a destacar es que estas células carecen de la capacidad de regenerarse, por lo tanto, cuando sufren un daño o se produce su muerte, nos encontramos con una pérdida progresiva e irreversible de la audición.
Órgano de corti. Leyenda: C. Túnel de Corti; E. Células ciliadas internas. 6, 6’, 6” Las tres filas de células ciliadas externas (en azul). Tomado del libro Grey´s anatomy. CC.
En la actualidad, este tipo de sordera se trata con el empleo de audífonos o bien con implantes cocleares, aunque sólo proporcionan una recuperación incompleta de la función auditiva en un número limitado de pacientes.
Lo que los investigadores pretenden con esta línea de investigación es demostrar la efectividad de la terapia génica como medio para recuperar la audición en los pacientes con sordera debida a unas mutaciones concretas.
Sordera genética
Los científicos han empleado ratones (Mus musculus) que poseen una mutación en el gen coclear de la transmembrana 1 (Tmc1). Las mutaciones que presentamos los seres humanos en este gen (TMC1) —hasta la fecha se han identificado 40 mutaciones— son responsables de entre un 4 y un 8% de los casos de sordera genética. La mayoría de estas mutaciones son recesivas (lo que significa que se precisan dos copias mutadas del gen para que se exprese la enfermedad): los niños con dos copias mutantes del gen TMC1 presentan una pérdida auditiva profunda desde una edad muy temprana, por lo general alrededor de 2 años. Se trata por tanto de una sordera prelocutiva o prelingual que aparece antes del desarrollo del lenguaje. Por otro lado, al menos cinco de estas mutaciones son dominantes y provocan una pérdida de audición progresiva que se inicia durante los años de la adolescencia, lo que permite que haya ventanas de oportunidad para una intervención clínica.
Aunque la función molecular precisa del gen TMC1 no está clara, hay consenso en que tanto este gen como su ortólogo, el gen TMC2, afectan a las propiedades de permeabilidad de los canales de transducción sensorial en las células ciliadas auditivas, y es probable que formen parte de los propios canales. En este sentido, los ratones que presentan deficiencias en los genes Tmc1 y Tmc2 carecen de transducción sensorial, es decir, les falla el proceso por el que una célula recibe y actúa sobre una señal externa y la transporta para estimular una respuesta específica. Aunque las células ciliadas presentan una morfología normal, la señal sensorial es incapaz de llegar al cerebro para su correcto procesado. En definitiva, estos ratones son completamente sordos, y además sufren graves disfunciones en el equilibrio.
El conjunto de la investigación se ha llevado a cabo con dos tipos de ratones mutados: una cepa presentaba el gen Tmc1 completamente eliminado, empleándose como modelo para estudiar la pérdida auditiva recesiva en los seres humanos (DFNB7/B11) debida a mutaciones que provocan la pérdida de función del gen TMC1. La otra variedad, llamada Beethoven (Bth), se emplea para el estudio de la forma dominante de sordera. Los ratones Bth retienen la transducción sensorial, pero ven reducida la permeabilidad del calcio que provoca una sordera progresiva que comienza entre los 5 y 10 años y se convierte en profunda en 10 o 15 años (de ahí que sean un modelo excelente para la pérdida de audición dominante progresiva en los seres humanos (DFNA36) que presentan una sustitución idéntica en la posición ortóloga (p.M418K) del gen TMC1 humano).
Alineación comparativa del gen Tmc1 en ratones y seres humanos (hacer clic para agrandar).
Es importante señalar que los ratones son, hoy por hoy, el mejor modelo donde reproducir las enfermedades humanas. En el año 2002 el Consorcio para la Secuenciación del Genoma del Ratón publicó la secuencia completa de su genoma compuesta por 2.600 millones de pares de bases(2). Se estima que el genoma del ratón contiene cerca de 30.000 genes, aproximadamente los mismos que nuestra especie y, lo que es más importante, el 99% de ellos tiene su homólogo humano. En definitiva, el estudio con ratones constituye una herramienta clave para entender el funcionamiento de nuestro genoma y, por ende, de muchas de nuestras enfermedades, a pesar de que hay que tener en cuenta que muchos procesos son completamente diferentes(3).
¿Cuál es la técnica que se ha empleado?
Uno de los principales obstáculos a los que se enfrenta cualquier terapia génica es lograr que la copia funcional del gen que se quiere introducir en el hospedador se exprese, es decir, funcione, y además que lo haga en el lugar correcto.
Estudios previos ya habían utilizado vectores adenovirales (AAV por sus siglas en inglés) para esta tarea: se toma un cromosoma vírico en cuyo genoma se inserta un fragmento de ADN extraño —en este caso una copia funcional del gen Tmc1— para introducirlo en la célula hospedadora. En estos trabajos se utilizó el vector in vitro para introducir la secuencia de codificación para los genes Tmc1 o Tmc2 en las células ciliadas que se habían extirpado previamente de ratones deficientes en Tmc1 y Tmc2. Estos experimentos demostraron una recuperación parcial de la transducción sensorial en dichas células.
Lo novedoso del artículo que venimos analizando es que los investigadores han ampliado estos estudios a un entorno in vivo y diseñado vectores AAV (AAV1 y AAV2) que permiten introducir la secuencia codificante para los genes Tmc1 o Tmc2 mediante una inyección directa en los oídos de los ratones. Estos vectores virales adenoasociados se introducen junto a un promotor (cuya función es la activar o desactivar un gen determinado) que permite que el gen se transcriba únicamente en las ya citadas células ciliadas.
¿Cuáles han sido los resultados?
Los resultados obtenidos indican que la inyección de copias sanas del gen Tmc1 a través de la membrana del tímpano permite la expresión de las copias funcionales del gen en los órganos del oído interno, y con ello, se logra restaurar la función de las células sensoriales.
Además, han demostrado que los genes Tmc1 y Tmc2 son funcionalmente redundantes, por lo que cualquiera de ellos puede recuperar la transducción sensorial y la función auditiva parcial in vivo en los ratones que portan mutaciones del gen Tmc1 recesivas (esto se ha logrado únicamente en las células ciliadas internas).
En definitiva, podemos dar cuenta de los siguientes resultados:
- En el modelo de sordera recesiva, la terapia génica con el gen TMC1 logró restaurar la capacidad de las células ciliadas para responder a los sonidos. Pero esta recuperación fue parcial: cuando los vectores se inyectan a través de la membrana de la ventana redonda en el oído interno, la recuperación de la función celular se limitó a las células ciliadas internas (IHCs por sus siglas en inglés). Por otro lado, en las células ciliadas externas (OHCs) hubo una escasa expresión de los genes exógenos después de la inyección de cuatro vectores diferentes. Como todos los vectores son capaces de impulsar la expresión del gen exógeno en las células estudiadas in vitro, parece que la diferencia con el proceso in vivo tiene que ver con un acceso limitado del virus a la superficie apical de las mismas. Por lo tanto, para alcanzar las células ciliadas externas se precisan nuevas estrategias de entrada de los vectores. En cualquier caso, se recuperaron las respuestas auditivas provocadas del tronco encefálico (BAER) en más del 50% de los ratones sordos, lo que indica que se produce una transmisión satisfactoria de la información auditiva desde la cóclea hasta el cerebro. Sin embargo, los umbrales de audición de las respuestas auditivas se elevaron en relación con los niveles de los ratones de tipo silvestre. Es decir, se necesita un sonido más alto para que se produzca la audición, lo que indica una recuperación incompleta de la función auditiva. Este aumento del umbral de audición quizás se deba a la falta de recuperación de la función de las células ciliadas externas como hemos señalado más arriba.
- En el modelo de la sordera dominante, la recuperación de la función auditiva también fue limitada. Sobre la base de las mediciones por investigaciones previas de la transducción sensorial y de la permeabilidad de calcio en ratones que presentan de forma silvestre los genes Tmc2, Tmc1, o Tmc1-Bth, se ha descubierto una reducción significativa de la entrada de calcio en las células ciliadas internas que presentan la mutación Bth; mientras que las células ciliadas del gen Tmc2 presentaron una entrada alta de calcio. La hipótesis actual es que se necesitan niveles adecuados de entrada de calcio para el mantenimiento y la supervivencia de las células ciliadas internas.
- Lo que quizás revista más importancia es que los ratones sordos recuperaron su capacidad de oír. Para probar la función auditiva, los investigadores midieron los reflejos de sobresalto: colocaron a los ratones en una “caja de sobresalto” donde sonaban pulsos fuertes de sonido. Un ratón con el gen Tmc1 mutado (completamente sordo) se queda sentado tranquilamente, mientras que los ratones tratados con la terapia génica dan saltos (se sobresaltan) como lo hace un ratón normal. Estas respuestas persistieron hasta 60 días (el tiempo máximo durante el que se hicieron las pruebas). El alcance de la recuperación de la respuesta auditiva en ratones Beethoven fue menor que la recuperación de las otras cepas, lo que sugiere que puede haber un umbral mínimo necesario para lograr respuestas de comportamiento a sonidos fuertes. De esto se deduce que cualquier terapia dirigida a la recuperación de la función auditiva en la sordera genética dominante humana (DFNA36) exigirá el desarrollo de estrategias alternativas a las planteadas aquí, quizás mediante la supresión del alelo dominante.
Del estudio:
En conclusión, los datos proporcionan una convincente prueba preliminar de eficacia que demuestra que el aumento de la expresión genética en un modelo murino de DFNB7/11 es eficaz en la recuperación de la función celular in vitro tanto en las células ciliadas internas como en las externas, la recuperación de la función de las células ciliadas internas in vivo, la recuperación parcial de los niveles de función de los sistemas in vivo, y la recuperación de los reflejos de sobresalto acústicos a nivel de comportamiento. La recuperación de las respuestas auditivas del tronco encefálico y las respuestas al sobresalto probablemente fue resultado directo de la recuperación de la transducción sensorial de las células ciliadas internas a nivel celular y sugiere que la reexpresión del gen Tmc1 puede restaurar la función auditiva en todos los niveles.
Artículo principal
Askew, C., et al. (2015), “Tmc gene therapy restores auditory function in deaf mice”. Science Translational Medicine, vol. 7, núm. 295, p. 295ra108.
El artículo al completo está disponible en el enlace de más arriba, pero aquí dejo una traducción parcial del mismo.
Referencias
Dorland, W. A. N. (2005), Dorland diccionario enciclopédico ilustrado de medicina. Madrid [etc.]: McGraw-Hill Interamericana de España, XXVII, 2210 p.
Dorland, W. A. N. (2005), Diccionario Dorland de idiomas de medicina inglés-español/español-inglés. Madrid [etc.]: Elsevier España S.A., 736 p.
Kurima, K., et al. (2002), “Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function“. Nature genetics, vol. 30, núm. 3, p. 277-284.
Notas:
- El nervio auditivo está compuesto por el nervio coclear, que transporta la información sobre el sonido; y el nervio vestibular, que transporta la información sobre el equilibrio. [↩]
- Por lo tanto un 14% más pequeña que el nuestro que tiene 2.900 millones de pares de bases. [↩]
- Las diferencias entre el ratón y la especie humana están en la activación y desactivación de los genes, un campo, el de la epigenética, que está siendo explorado en profundidad gracias al proyecto ENCODE. [↩]